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Abstract

From Riemannian geometric point of view, one of the most fundamental problems in the study
of Lagrangian submanifolds is the classification of Lagrangian immersions of real space forms into
complex space forms. The purpose of this article is thus to classify Lagrangian surfaces of constant
curvature in complex projective plar@P?. Our main result states that there are 29 families of
Lagrangian surfaces of constant curvatur€ iP?. Twenty-two of the 29 families are constructed via
Legendre curves. Conversely, Lagrangian surfaces of constant curvatDRe iare obtained from
the 29 families. As an immediate by-product, many interesting new examples of Lagrangian surfaces
of constant curvature i@ P? are discovered.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A submanifoldM of a Kaehler manifoldV/ is called Lagrangian if the almost complex
structurel] of M interchanges each tangent spacklafith its corresponding normal space.
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Lagrangian submanifolds appear naturally in the context of classical mechanics and math-
ematical physics. For instance, the systems of partial differential equations of Hamilton—
Jacobi type lead to the study of Lagrangian submanifolds and foliations in the cotangent
bundle. Furthermore, Lagrangian submanifolds are part of a growing list of mathematically
rich special geometries that occur naturally in string theory.

For a Lagrangian submanifold with mean curvature vectdd and shape operatdy,
the dual 1-form oflH is the well-known Maslov form. A Lagrangian submanifold is called
Maslovian if it has no minimal points and if its Maslov vector fidld is an eigenvector of
AH.

In the study of Lagrangian submanifolds, it is important to construct non-trivial new
examples. Also, from Riemannian geometric point of view, one of the most fundamental
problems in the study of Lagrangian submanifolds is to classify Lagrangian immersions of
real space forms into complex space forms. Such submanifolds are either totally geodesic
or flat if the immersions were minim8,11] (for indefinite case, this was done in a se-
ries of articled9,12,13,15]. For non-minimal Lagrangian immersions, this problem have
been studied ifi3,4,6,7]among others. In particular, Lagrangian submanifolds of constant
curvaturec in complex space forms of holomorphic sectional curvatureave been deter-
mined in[6] by utilizing the notion of twisted products. Moreover, Maslovian Lagrangian
immersions of real space forms into complex space forms were classified ). In par-
ticular, Maslovian Lagrangian surfaces of constant curvature in complex projective space
were classified if4].

In this paper, we classify Lagrangian surfaces of constant curvature in the complex
projective plane P2 without the Maslovian condition. The class of Lagrangian surfaces of
constant curvature i@ P? is much bigger than the class of Maslovian Lagrangian surfaces
of constant curvature. In fact, our main result states that there are 29 families of Lagrangian
surfaces of constant curvaturedP?2. Twenty-two of the 29 families are constructed via
Legendre curves. Conversely, Lagrangian surfaces of constant curvafl&ame obtained
locally from the 29 families. As an immediate by-product, many interesting new examples
of Lagrangian surfaces of constant curvatur€iP? are discovered.

2. Preprimaries

Let #" (4c) denote a complete simply-connected Kaehtenanifold 7" (4¢) with con-
stant holomorphic sectional curvature@dM a Lagrangian submanifold ife” (4c). We
denote the Riemannian connectiondwfind 4" (4c) by V andV, respectively. The for-
mulas of Gauss and Weingarten are given, respectively, bj1{3f.

VxY = VxY + h(X, Y), (2.1)
Vxé = —AgX + Dxé, (2.2)

for tangent vector fieldsX, Y and normal vector field, where D is the connection
on the normal bundle. The second fundamental féris related to the shape opera-
tor Az by (h(X,Y), &) = (A¢X,Y). The mean curvature vectdt of M is defined by
H = (1/n)traceh. A point p € M is called minimal ifH vanishes ap.
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For Lagrangian submanifoldd in 47" (4¢) we have (cf[8])
DxJY = JVyY, (2.3)
(h(X,Y), JZ) = (h(Y, Z), JX) = (h(Z, X), JY). (2.4)

If we denote the Riemann curvature tensoMbby R, then the equations of Gauss and
Codazzi are given, respectively, by

(R(X,Y)Z, W) = (h(X, W), h(Y, Z)) — (h(X, Z), h(Y, W))

(Vxh)(Y. Z) = (Vyh)(X, Z), (2.6)
whereX, Y, Z, W are tangent td1 andV# is defined by
(Vh)(X, Y, Z) = Dxh(Y, Z) — h(VxY, Z) — h(Y, Vx Z). (2.7)

We recall the following theorems for later use (&f]).

Theorem A.Let(M", (., .)) be an n-dimensional simply connected Riemannian manifold
Leto be a TM-valued symmetric bilinear form on M satisfying

() (o(X,7Y), Z) is totally symmetric
(i) (Vo)(X,Y,Z)=Vxo(Y,Z)—o(VxY, Z) — o(Y, Vx Z) is totally symmetric
(i) RX,NZ=c({(Y,Z)X —(X,Z2)Y)+o(c(Y, Z2), X) —o(c(X, Z), Y),

Then there exists a Lagrangian isometric immersionM — " (4¢c) whose second fun-
damental form h is given by = Jo.

Theorem B.LetL1, L, : M — M"(4c) be Lagrangian isometric immersions of a Rieman-
nian n-manifold with second fundamental foridsand 2, respectively. If

(hY(X,Y), JL1.Z) = (h?(X,Y), JL2. Z) (2.8)

for all vector fields X,Y,Z tangent to M, then there exists a biholomorphic isorpetfy
M"(4c) such thatL1 = Ly o ¢.

3. Lagrangian and Legendrian submanifolds

We recall the following basic relationship between Legendrian submanifolfé 6¥(1)
and Lagrangian submanifolds of the complex projectivepaceC P"(4) with constant
holomorphic curvature 4 (cf14]).

Let

S = (21, - -s zag1) € €L (2 2) = 1P)

be the hypersphere i6"*1 centered at the origin with radiusOn C"** we consider the
complex structurd induced byi = +/—1. Ons?'*+1(1) we consider the canonical Sasakian
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structure consisting af given by the projection of the complex structuref C”** on the
tangent bundle 0§2*+1(1) and the structure vector fiefd= Jx with x being the position
vector.

An isometric immersionf : M — $2*t1(1) is calledLegendrian if & is normal to
F(TM) and(¢( f:(TM)), f.(TM)) = 0, where(, ) denotes the inner product & 2. The
vectors of$?*+1(1) normal to¢ at a pointz define the horizontal subspagg of the Hopf
fibrationz : $%*+1(1) — CP"(4). Therefore, the conditior'is normal tof,(TM)” means
thatfis horizontal; thus it describes an integral manifold of maximal dimension of the contact
distribution#.

Lety : M — CP"(4) be a Lagrangian isometric immersion. Then there exists an iso-
metric covering map : M — M and a Legendrian immersiofi: M — $2'*+1(1) such
that ¢ (t) = n(f). Hence, every Lagrangian immersion can be lifted locally (or globally
if we assume the manifold is simply connected) to a Legendrian immersion of the same
Riemannian manifold.

Conversely, suppose that: M — $2*+1(1) is a Legendrian immersion. Thep =
7(f): M — CP"(4) is again an isometric immersion, which is Lagrangian. Under this
correspondence, the second fundamental fokfsand #¥ of f and v satisfy w,.h/ =
hY. Moreover,h/ is horizontal with respect ter. We shall denotér/ and 1Y simply
by h.

Let L : M — §2"*1(1) c ¢! be an isometric immersion. Denote Byand V the
Levi—Civita connections of”** andM, respectively. Leh denote the second fundamental
form of M in $2'+1(1). Then we have:

VxY = VxY +h(X,Y) — (X, Y)L. (3.1)

4. Legendre curves

A curvez = z(r) is called regular if its speed(r) := |z/()|, is nowhere zero. A regular
curvez = z(s) in the hyperspher§?—1(r) c C"*1is calledLegendreif (z/(r), iz(r)) = 0
holds identically.

The following lemma follows easily from the definition.

Lemma 1. Every horizontal lift of a regular curve in a Lagrangian submanifold’a@t" (4)
via the Hopf fibrationr is a Legendre curve is?*t1(1) c ¢+,

It is known that a unit speed Legendre cur¢e) in S3(r) C C? satisfies:

) = i) () ~ 2, (4.1)

wherex(s) is the curvature function afin $3(1) (cf. [4]).

A unit speed curve(s) in $3(r) c C? satisfiesz”(s) = —z(s)/r2 if and only if it is a
geodesic. A geodesic ifi3(r) can be Legendre or non-Legendre. For example$,=
(coss, sin s) is Legendre and(s) = (¢, 0) is non-Legendre.



432 B.-Y. Chen / Journal of Geometry and Physics 53 (2005) 428—-460
Lemma 2. Letr be a positive number r. Then we have

(1) Every Legendre curve= z(1) : I — S3(r) c C? satisfies

’ 2
zwpqwﬂm+%ﬁo—%w) 4.2)

wherev is the speed of z and= «v with « being the curvature of z if3(r).
(2) Conversely, ifaregular curve= z(¢) in $3(r) c C?with speed satisfying differential
Eq. (4.9 for some nowhere zero real-valued functigrthen z is a Legendre curve

Let $2(1/2) = {(x1, x2, x3) € R®: x2 + x5 + x% = 1/4}. Then the Hopf fibrationr :

$3(1) - CP(4) = $%(1/2) is given by
2 2
n@m=§a@j¥i> (z, w) € $3(1) c C2. (4.3)

For each Legendre curvein $3(1) c €2, the projectionr o y is a regular curve in
$2(1/2). Conversely, each regular curyyén $%(1/2) gives rise to a horizontal lift is3(1)
which is unique up to a factaf?, 6 € R. Each horizontal lift oft is a Legendre curve in
$3(1). Since the Hopf fibratiom is a Riemannian submersion, a Legendre cyrire $2 is
projected to a curve i§?(1/2) with the same curvature.

In order to explain our methods for constructing Lagrangian surfaces of constant curva-
ture in C P2, we recall the notions of special Legendre curves and their associated special
Legendre curves which are introduced2m].

Let z = z() be a Legendre curve is3(r) c C® with speedv. Thenz, iz, 7, iz’ are
orthogonal vector fields. Differentiating’(z), iz(¢t)) = (z'(¢), z(¢)) = 0 yields(z",iz) =0
and (7", z) = —1. Thus, there exists a non-zero normal vector fielcoerpendicular to
z,iz, 7', iz’ such that

/ 2
20 = WO () + 2(0) = S2(0) — al)P:(0) (4.4)

for some real-valued functionsanda. The Legendre curveis calledspecialif P, in (4.4)
is a parallel normal vector field, i.eB/(r) = a(r)z'(r) for some functioru(z). If a special
Legendre curve does not lie in any proper linear complex subspag® tifen the function
ain (4.4) is not identical zero. I is a special Legendre curve satisfying (4.4), thign
is also a special Legendre curve 8n= {r € I : a(tr) # 0} which is called theassociated
special Legendre curves z (see[4]).

Special Legendre curves do exist extensively. In fact, it was prov§d] ihat, for any
given non-zero functiong (s), a(s) defined on an open intervhlthere exists a unit speed
special Legendre curve: I — $°(c) ¢ €° satisfying (4.4) with P.| = 1.

5. Classification theorem

The main result of this paper is following classification theorem.
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Theorem 1. There are 29 families of Lagrangian surfaces of constant curvature in the
complex projective plan€ P?(4):

(1) Totally geodesic Lagrangian surfaces of constant curvature one
(2) Flat minimal Lagrangian surface defined by

1 , . .
L(s.1) = ﬁ(e_"@, V2652 cos(/3/21), v/2¢1/V2 cos(/3/21)).

(3) Lagrangian surfaces of curvature one defineddyy L with
L(s, y) = (cosy, z(s) sin y),

wherez(s) = (z1(s), z2(s)) is an arbitrary unit speed Legendre curveSA(1) c C?.
(4) Lagrangian surfaces of curvature one defineddyy L with

L(s, y) = z(s) cosy + P,(s) siny,

wherez : I — §5(1) c €2 is an arbitrary unit speed special Legendre curve and
P, : I — $5(1) c C3is the associated special Legendre curve.of z
(5) Lagrangian surfaces of positive curvaturédefined byr o L with

L(s,y) = 0-Dz() + @t Fu(y),  b>0, =142

wherez : I — S$°(v/b + ¢/~/2¢) C C® is an arbitrary special Legendre curve with

speedl/2andw : I — $°(v/c — b/+/2¢) is the associated special Legendre curve of
z with speed /2.

(6) Lagrangian surfaces of positive curvaturédefined byr o L, where

L(s, y) = (z1(s), z2(s) cosy, z2(s) siny)

andz = (z1, z2) is a unit speed Legendre curveS$d(1) c €2 given by

ele

1= [(a _ b)eias o (a + b)e—im]’
2a
ibs
Ccos
Zz:e—@s)’ a=+v1+ b2

a

for an arbitrary non-zero real number.b
(7) The Lagrangian surface of curvature one definedrhyL, where

L(s, y) = (za(s), z2(s) cosy, z2(s) siny)
andz = (z1, z2) is the unit speed Legendre curveS#(1) c C? given by

1—isins COSs

2 T

1= (secs + tans)'.
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(8) The flat Lagrangian surface defined by L, where
L(s, y) = (za(s), z2(s) cosy, z2(s) siny)

andz = (z1, z») is the unit speed Legendre curveSA(1) c C? given by

b2 —1 o b?=1s
n=——"7 2=—"":, b>1
! beis/A/b2—1 2 b

(9) The flat Lagrangian surface defined oy L, where

L(s. y) = (z1(s). z2(s) cosyy, z2(s) sin y)

andz = (z1, z») is the unit speed Legendre curveS#(1) c C? given by

<1

2=—|———
V2 V2 \14/1-42

(10) Lagrangian surfaces of negative curvaturé? defined byr o L, where

_ 2 i
_ Y2 it (/1) s ( seV i )

L(s, y) = (z1(s), z2(s) cosy, za(s) siny)

andz = (z1, z2) is a unit speed Legendre curveS$d(1) c C? given by

. =1 a1 -1 [ “2bs_ 12
1= (b — /e,ZbS _ kz)ehs'ﬂkh tan - (k e s —k )’

bs+ikb™ tan L (kL e~ 255 —k2)—ib L/ e~ 25 k2

i2=¢€

with arbitrary positive number b andl = /b2 + 1.
(11) Lagrangian surfaces of positive curvaturé defined byr o L, where

L(s, y) = (za(s), z2(s) cosy, z2(s) siny)

andz = (z1, z2) is a unit speed Legendre curve$i(1) c C? given by

cosps) (/a2 cof(bs) — 1+ iasin(bs) o/
(v

a= a(az _ 1)a/2heib*1 tan~1(sin(ps)/+/ a2 COSZ(bs)—l)’
. a/b
Ja? — co2(bs) <\/a2 cof(bs) — 1+ ia sm(bs))
12 =

a(az _ 1)a/2b i (b sin(ps)/«/a? cog(bs)—1)

with arbitrary positive numbeb > /2 anda = v/b2 — 1 > | secps)|.
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(12) Lagrangian surfaces of positive curvaturé defined byr o L, where

L(s, y) = (za(s), z2(s) cosy, z2(s) siny)

andz = (z1, z2) is a unit speed Legendre curves$i(1) c €2 given by

. /b
J1+ b2 — coP(bs) (JaZ coS(bs) + 1+ ia sm(bs))”
a= b/t \/p2 + 1e tam1(b sin(ps)/A/a? coL(bs)+1)

. a/b
cosps) (N/a2 co(bs) + 1+ ia S|n(bs)>
2= balb /b2 + 1e—ib7t tant1(sin(s)/v/a2 coR(bs)+1)

with arbitrary positive numbeb > 1 anda = +/b% — 1.
(13) Lagrangian surfaces of positive curvaturé < 1 defined byr o L, where

L(s, y) = (za(s), z2(s) cosy, za(s) siny)
andz = (z1, z2) is a unit speed Legendre curves$i(1) c €2 given by

\/sz(bs)e_i tan‘l(b sin(ps)/«/1-a? co@(bs))
- Vb2 +1 (i(\/l —a? co(bs) +a sin(bs)))ia/b

’

B eﬂfl tanh~1(sin(bs)/r/1—a? co(bs)) cosps)
2= /b2 1 1 giab~tsinh~Y(ab~1 sin@s))

with arbitrary positive numbeb € (0, 1) anda = /1 — b2.
(14) Lagrangian surface of negative curvaturé? defined byr o L, where

L(s., y) = (z1(s). z2(s) cosy, z2(s) siny)

andz = (z1, z2) is a unit speed Legendre curveS$i(1) c €2 given by

iva2 — k2 cost(bs) — b sinh(p)

71 = ’
1 meibflk Sinfl(k sinh@s)/ /a2_k2)
cop—1 —1 . \/2_27
ezab tan (a sinhs)//a“—k cosf?(bs)) coshbs)
72 =

meilflk Sinfl(k sinhBs)// a2—k2)

with arbitrary positive number b and > k := +/1 + b2.
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(15) Lagrangian surfaces of negative curvaturé? defined byr o L, where
L(s, y) = (za(s), z2(s) cosy, za(s) siny)

andz = (z1, zo) is a unit speed Legendre curveS$d(1) c C? given by

sinh(ps) <k coshbs) + iva? — k2 sinhz(bs))k/ ’

a= [aZ + D2(1 + a2 + bZ)k/Zbeiab—l tanh1(a coshps)//a2—k2 sinte(bs))
- - k/b
(iv/a?2—k? sint(bs)—b coshps)) (k coshps)+iy/a?2—k?2 smhz(bs)>
2=

Va? + b?(1+ a? + b?)k/2

with arbitrary positive numbers a, b ard= +/1 + b2.
(16) Flat Lagrangian surfaces defined lyo L, with

—is/a

Lis) = (ﬁ

, z(v)eias> , O#acR,

wherez = z(v) is an arbitrary unit speed Legendre curveSA(1/v/1 + a?) c C2.
(17) Flat Lagrangian surface defined byo L with

L(s, v) = VP Z(u)stt? Vitb?—s
7 (c + Vb2 — 52 ic’ V1 b2ei tant \/b2—s?

where b is an arbitrary positive number and= z(v) is an arbitrary unit speed Leg-
endre curve ins3(1/+/1 + b2) C C2.
(18) Lagrangian surfaces of positive curvatureédefined byr o L, with

L=¢b (i sin(cs) — lg cosgs), 2z(1) cos@s)) , c=+1+4b2,

where b is an arbitrary positive number and= z(v) is an arbitrary Legendre curve
of speedl/2in $3(%) c C2
(19) Lagrangian surfaces of curvature one defineddyy L, with

L(s,f) = <—V 144 S;”ZS gl tam
V1+a

Ya sins)’ Z(t)(SECS + tans)i/a COSS) s
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where a is an arbitrary positive number and= z(¢) is an arbitrary Legendre curve
of constant speed a i§%(a/+/1 + a2) C C2.
(20) Lagrangian surfaces of positive curvaturé defined byr o L with

Lis.1) = Vb2 — 2 — cof bs(v/a? cof bs — c2 + ia sinbs)¥/?
7 N exp(i tan1(b sin(bs/~/a? cog bs — c2))) ’

z(f) cosps) expi {% sint (a sin(s)/va? — cz)

- % tan (¢ tanps)/v a? — c? se@ bs)}) ,

where b, ¢ are any positive numbers with- 1, z = z(¢) is an arbitrary unit speed
Legendre curve is3(1/v/b2 — ¢?) ¢ €? anda = v/b? — 1.
(21) Lagrangian surfaces of positive curvaturé defined byr o L with

LEs. 1) Vb2 + 2 — co@ bs(va? coR bs + 2 + ia sinbs)*/?
s, 1) = .
Vb2 + c2(a? + c2)4/20 exp( tan1((b sinbs)/~/a? co bs + c2))

2(1)(cosbs)(v a? co bs + 2 + ia sinbs)¥/®

« expl S tanhrt (< t@nbs
P b a? + c2 se@ bs ’

where b is an arbitrary positive number 1, z = z(¢) an arbitrary Legendre curve of
constant speeth? + ¢2)~/? in §3(1/v/b? + 2) C €?, anda = vb? — 1.
(22) Lagrangian surfaces of positive curvaturé defined byr o L with

V24 SiIPs i an s e tant
L(s, 1) = ( ¢ 1_:_ > Se—z tan 1((Slns)/c)’ Z(t)ezm tanh1(tan(s/2)) COSS) 7

wherez = z(¢) is an arbitrary unit speed Legendre curveSA(—~—) c C2.

A 142

(23) Lagrangian surfaces of positive curvaturé defined byr o L with

L(s.1) = <Z(t) expi {% tanhr ! <L"bs>

2 — a? co? bs

. sinb.
— 2 ginnt <u> } cosbs,
b )

ct—a
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2 —
b2 + 2 — coF bs expi { g’;(*zz” ‘)l) tan? Y <a cof by }
VB2+c%(a sinbs+~/c?—a? cof bs)/® expi [2,,‘5(‘22‘ 5 |

xtan*l b sinbs

A/ c2—a? co2 bs

wherez = z(¢) is an arbitrary unit speed Legendre curveSf(1/v52 + ¢2) c C%, b
is an arbitrary real number ir{0, 1) anda = +/1 — b2.
(24) Lagrangian surfaces of negative curvaturé? defined byr o L with

L(S l) _ e—ib_la Sinil(a(sinhbs)/ /C2_a2)
5 (MW — b sinhbs

CZ_bZ

Z(t)eicb‘l tan‘l(c(sinhbs)/«/ c2—a? costt bs)

a=+v1+0b?

wherez = z(¢) is an arbitrary unit speed Legendre curveSf(1/+v/c2 — b2) c €%, b
an arbitrary positive number, and ¢ an arbitrary numbera.
(25) Lagrangian surfaces of curvature one defineddxy L with

coshbs> ,

seclbs

V14 4p?
2be'*/? cos(/@ t/2> , 2be™/? sin (/m t/ 2)) ;

where b is an arbitrary non-zero real number

(26) Curvature one Lagrangian surfaces of ty@g,y, ,y) described in Propositio6.1.

(27) Lagrangian surfaces with positive curvature K of tjﬂg’q}, l’f¢) described in Propo-
sition 6.2.

(28) Lagrangian surfaces of positive curvature K of t)(ﬁ%f(b, y/fqb) described in Propo-
sition 6.3.

(29) Lagrangian surfaces of positive curvature K of t)(p%(q,, 654,) described in Propo-
sition 6.4.

L(s, 1) = <\/ (1 + 4b2) COSH bs — 4b2e—1 1@ (2D tanhbs)

Conversely, up to rigid motions @fP?(4), locally (in a neighborhood of each point
belonging to an open dense subset), every Lagrangian surface of constant curvature in
CP2(4) is obtained from one of the 29 families

Proof. LetM be a Lagrangian surface of constant curvaklireC P?(4). Denote the tangent
bundle ofM by TM. If M is minimal inC P2(4), then it is totally geodesic or flat (¢B,11]).
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So,M is an open portion of a Lagrangian totally geodesic real projective pratt¢1) or
a flat minimal surface i€ P2(4). This gives Cases (1) and (2)0J

Next, let us assume thM is non-minimal. TherU := {p € M : H(p) # 0} is a non-
empty open subset. We shall work brinstead ofM.
For each poinp € U, we define a functiony, by

Yp - T[}U = R:vi> y,(v) = (h(v, v), Jv),

WhereTI}U ={veT,U:{v,v) =1} SinceTI}U is a unit circle which is compact, there
existsavector € TplU such thay,, attains an absolute minimumasSincepis a non-totally
geodesic point, (2.4) implies thag # 0. So, by applying linearity, we hayg,(v) < 0. As
yp attains an absolute minimum watit follows from (2.4) that(x (v, v), Jw) = 0 for all

w orthogonal tov. Combining this with (2.4) shows thatis an eigenvector of the shape
operatorA ;,. Hence, there exists an orthonormal bdsis e>} of T, M with e; = v which
satisfies

h(e1, e1) = AJeq, h(e1, e2) = ulea, h(ez, e2) = nder + pJes, (5.1)

for some functions., 11, ¢. As H # 0, we have { + )2 + ¢2 > 0 onU.

If ¢ = 0 onU, the the Lagrangian surface is Maslovian. Hence, it follows from Theorem
3 of [4] that the Lagrangian surface, restrictedUpis given by one of the Lagrangian
surfaces given in Cases (3)—(15).

Next, let us assume that=# 0 on an open subsét C U. In this case, (5.1) and the
equation of Codazzi imply

el = gpwi(e1) + (h — 2u)w3(e2), e2h = (h — 2u)w3(e1),

(5.2)
e — e19 = Buwi(er) + pwi(e2),
whereVye; = w%(X)ez. Also, from (5.1) and the equation of Gauss we have
K = i — u? + 1 = const (5.3)

Case (I).V,,e1 = 0 on an open neighborhooW; of a point in V. In this case, (5.2) and
(5.3) imply
e =0 —2u)0f(e2),  e2r=0, e —e1p = gwi(er) (5.4)

on V;. By differentiating (5.3) with respect tep and by applying (5.4), we obtair
21)e20 = 0. Thus, we have eithér= 2u or e = 0 at each point of/;.

If A =2u on some connected open sub$étc Vi, then K = u? + 1 on W which
implies thatu is constant oiV. So, e2u = 0 also holds onWV. Consequently, we have
eo = 0 identically onVy. Therefore, we obtain from (5.4) that

eqn = — ZM)a)%(ez), eod = eop = 0, e19 = —(pa)%(ez). (5.5)

As we haveV, e; = 0 on Vy, there exists a local coordinate systésmu} on V1 such
that the metric tensor is given by

g =ds®ds+ G2(s, u) du @ du (5.6)
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for some functionG with 9/ds = e1, 9/du = Gez. From (5.5) we have. = A(s) andu =
u(s). Also, it follows from (5.6) that

ad d G
Vijou— = (ING)s—, 2e2) = —. 5.7
oo 5 (InG), ™ wi(e2) G (5.7)
By (5.5), (5.6) and (5.7), we find (I6), = —(In ¢),. Thus, (5.6) becomes
F?(u) 3 ¢ 9
=ds®d du ®d =— = — 5.8
g=ds®ds+ P u @ du, = e2 F(a) (5.8)

for some positive functiorf'(z). By applying (5.8) and the equation of Gauss, we have
ppss — 292 = K¢?. After solving this differential equation, we obtain

A(u)secps + B(u)), if K=0?>0,
A(u) .
Ul Byt i 0, (5.9)
A(u)sech bs + B(u)), if K =—b? <0,
for some functionsA(u), B(u) andb > 0, whereA is nowhere zero oii;.
Letr = ¢(u) be an antiderivative of'(1)/A(u). Then (5.8) and (5.9) give

ds ® ds + coF(bs + 0(t)) dr @ dr, if K = b? > 0,
g=1{ ds®ds + (cs + 6(r))? dr ® d, if K=0, (5.10)
ds ® ds + costf(bs + 6(1)) dr @ dr, if K = —b? <O,
some functioro(r).

We divide Case (l) into several cases.

Case (l.i).A = 21 on an open subsédf1 C Vi. In this case, botl, u are constant and
K =1+ u? > 1onUy by (5.3).

If A = u =0 onUj, the Lagrangian surface is Maslovian. So, this reduces to previous
case. Hence, we may assume that 2 = 2b for some positive numbdy on U; which
givesk = 1+ b? > 1. From (5.9) and (5.10) we have

g = ds ® ds 4 cof(bs + 6(1)) dr ® dr,
A=2u=2b>0, ¢ = f(r) secbs + 0(1)),

9 J 9 (5.11)
Ve — — Va/qe— — — _ -
oos 5 0, ooy, b tanps + 6(1)) v
\Y% o _"b sin(2bs + 20(t)) 9 0'(¢t) tanps + 6(z)) 9
oy = 2 y a5 y o

wheref is non-zero function. Applying (5.1), (5.11) and the formula of Gauss, we find
Ly =2ibLs — L, Ly = (ib — c tanps + 0))L;,

Ly = (ib cosps + 6(t)) + b sin(bs + 0(t))) cosps + 6(1)) L (5.12)
+(if (r) — 0 tanps + 0))L; — coS(bs + 6(1))L.
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After solving the first equation of this system, we obtain

L = C=V(A@) + B()eX®), c=+1+b2 (5.13)

for someC3-valued functionsA(z), B(r). By substituting this into the second equation of
(5.12), we discover tha'(r) = A’(t)e2?. Hence, (5.13) becomes

L; = A'(1)e' 0=V (1 + £2(bs10)y, (5.14)

If 6 is constant orU1, we havey = 0 after applying a suitable translation enThus,
(5.14) becomes,; = A’()e!®=3(1 + ¢2¢5) which implies that

L = A(t)e'P=D(1 4 %) + K(s) (5.15)

for someC3-valued functionk (s). Substituting (5.15) into the first equation in (5.12) yields
K" = 2ibK' — K. Hence, after solving the last equation, we obtkis) = ¢~ (ay +
a»e®s) for some vectorss, ap € C3. Therefore, we may put

L = F(i)(e®) 4 ofb+sy 4 ¢ ilb+0)s

for some vector functiot¥ () and vector;. Substituting this into the last equation in (5.12)
gives

2F"(1) — 2if (1) F'(t) + 2¢°F (1) + c(b + ¢)c1 = 0.
Thus, we getfF(r) = z(t) — ((b + ¢)/2¢)c1, wherez = z(¢) is aC3-valued solution of
2(1) — if (£)2'(£) + c2z(r) = 0. (5.16)
Consequently, we obtain
L=¢" {(22(t) - (é) cl> coses) + icy sin(cs)} . (5.17)

Since|L|? = 1, (5.17) implies that
leal =1, [2cz(t) —berl> =%, (z(1), ic1) = 0. (5.18)

It follows immediately from (5.17) that

. ibs
Ly = ’ec {(c1 + 2bez(t)) coses) + 2ic2z(r) sin(es)),
L, = 2 cos¢s)e’? 7 (7). (5.19)

Thus, by applying the first equation in (5.11) and (5.19), we also have

1 1
70 =%,  len+2bez(t))P =2zl = . (5.20)
2 2c
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From|c1| = 1, |z] = 1/2c¢ and the second equation in (5.20) we gét), c1)=0. Also, by
applyingLemma 2 we know that = z(r) is a Legendre curve of speed2lin $3(1/2c) C
C? c C®. So, if we choose; = (1, 0, 0), we obtain from (5.17) that

L=¢" (i sin(cs) — IS cosks), 2z1(t) coses), 2z2(1) cos@s))

Consequently, restricted 1@, the Lagrangian surface fiP2(4) is congruent to the com-
positions o L, wherelL is given by Case (18).

Next, assume that is a non-constant function on an open intera 0. From (5.14)
we find

L = b=V A(r) 4 £ OFe)s / A'(0)e?? dt + K (s), c=vVb2+1 (5.21)
0

for someC3-valued functionK. Substituting this into the first equation in (5.12) gives
K" = 2ibK’ — K. Solving this equation givek = a1¢/®=)5 + ay¢/+9)s for some vectors
a1, az € C3. Hence, we obtain

L = P~V 7(1) + OBy (r), (5.22)

wherez(r) = A(f) + a1 andw(t) = [5 A'(1)e?? dt + a.
Since|L| = 1, (5.22) implies that &= |A(1)[? 4 |W(1)|? + 2(ze***, w). Hence, by ap-
plying (z, e?“w) = cos(2s)(z, w) + sin(2s)(z, iw), we find

(z, w) = (z, iw) =0, Iz(t)l2 + |u)(t)|2 =1

Also, from (5.22), we have

Ly = i(b — )= z(r) + i(b + ¢)e'CTsw(r),

L, = 2/(1)ei=5(1  (2ilest0(0)y. (5.23)

Applying these givesz'(r)| = |w'(1)] = 1/2, |2(1)1* = b + ¢/2c, and|w(t)|? = ¢ — b/2c.
So, after differentiating the last equation, we h&ye%?, w) = 0. Moreover, by applying
(L, L;) ={(Ls,iL;) =0, we get

(Z, eZi(cs+9)Z/> + <Z/, eZicsw) — (b _ C)(Z, eZi(cs+9)Z/) + (b + C)(Z/, eZicsw> =0.
Therefore, we obtaiA, ¢Z(s+0);7/y = (7', ¢Zw) = 0 which implies that

(z.iz) = (¢, w) = (¢, iw) = (w', iw) = 0.

Thus,z: I — S3(W/b ¥ ¢/v/2¢) c C3andw : I — S°(J/c — b/+/2¢) C C2 are Legendre
curves of constant speed 1/2.
Now, by substituting (5.22) into the last equation in (5.13), we find

2'0) = i(H(t) — 0/(0))2 (1) — C(CZ_ LI C(b; ) =200,). (5.24)
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Sincew/'(r) = ¢%97/(t), w = w(r) is a parallel normal vector field. Consequently,
I — $°(V/b+c¢/~/2c) C C® is a special Legendre curve of constant spegdl dndw :
I — S3(J/c —b/v/2¢) C € is an associated special Legendre curve wfth the same
constant speed. Therefore, the Lagrangian surface is congruent to the composition
whereL is given by Case (5).
Case (l.ii).A # 2u on an open subsdf, C V. In this case, (5.2), (5.3) ard,,e; =0
imply exx = eau = 0. Thus, we obtain from (5.4) that

w'(s)

A=2u

If u = 0 identically on an open subs¥étof Uy, then (5.3) and (5.25) implk = 1 and
a)f = 0 onV which is impossible. Sq; # 0 almost everywhere obis.

Case (l.ii.a).A = u # 0onU,. From (5.3) and (5.4) we get

wl(e2) = (5.25)

K=1 ei(np) = —a)%(ez), el =eou =0, e1p= —goa)f(ez). (5.26)

So,2 andu depend only ors according to (5.8). Combining (5.7) and the second equation
in (5.26) givesG = F(u)/u(s). Hence, (5.6) reduces to
dr @ dr
n?(s)
wherer = 1(u) is an antiderivative of*(«). Thus, (5.10) yieldg.~1 = a cos( + b) with
a # 0. Hence, after making a suitable translatios,ime obtain
secs

g =ds®ds + a® cog sdr @ dr, A== —-: (5.28)
a

g=0ds®@ds+ (5.27)

Without loss of generality, we may choage- 0.

From (5.28) we finduf(ez) = —tans. Thus, we may obtain from the last equation in
(5.26) thatp; = ¢ tans which givesp = f(r) secs for some functiorf.

From (5.1), (5.28) and the formula of Gauss, we obtain

i secs
Lss =" Ls - L,

le‘ = (% — ta.ns) L[, (529)
Ly = (ia coss + a? sins coss)Lg + iaf(f)L; — a® co$ sL.

Solving the first equation in (5.29) gives

L = z(r)(secs + tans)/® coss + C(1)y/1 + a2 sin? s e~ T (asins)

for someC3-valued functiong andC. Substituting this into the second equation in (5.29)
givesC’ = 0. So,C is a constant vector, say. HenceL is given by

L = z(1)(secs + tans)/® coss + c1y/ 1 + a2 sir? s e~ T Ha sins) (5.30)
Substituting this into the last equation of (5.29) yields

(1) = iaf (02 (1)) — (L + a®)z(0). (5.31)
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It follows immediately from (5.30) that
p. lasins— i){cra®e™ BT @S cogs — 7(1)y/1+a2 sir? s(secs+ tans)/“)

L, = Z/(t)(secs + tans)/* coss.

(5.32)

Since|L| = 1, (5.30) and (5.32) imply that

a
el = —. 1z'(t)| = a, (c1,2) =0.

Vita? 1+ a?

Moreover, from(L;, iL;) = 0, we also havéci, iz(¢)) = (z(¢), iz/(¢)) = 0. These shows
thatz = z(r) is a Legendre curve if(a/+/1 + a2) c C? with constant speed, whereC?

is a complex hyperplane witty as its hyperplane normal. Consequently, the Lagrangian
surface, restricted tb/,, is obtained from Case (19).

lz(1)] =

Case (lii.b).A # p, u # 0on an open subsé¥; C Us. In this case, (5.3) implieK # 1.
Moreover, from (5.3), (5.5) and (5.7), we have

ho=p+ £

wy(e2) = ex(InV/|K — pu? — 1)) = ex(Ing) = —e1(IN G)

on Wy, whereG is defined by (5.6). Hence, we get

Gy IK — 2 =1 = p(), 9G = f(1), (5.34)

for some positive real-valued functigrand and non-zero real-valued function
We divide this case into several cases.

(5.33)

Case (Lii.b.1).K = b? > u? + 1 > 1on aneighborhood¥; ; of a pointp € W;. Without
loss of generality, we may choose> 1. From (5.10) and (5.34) we get

g = ds ® ds 4+ co(bs + 6(r)) dr @ dr,
p?=b2—1— p%(1) seé(bs +0()), ¢ = f(t) secbs + 6(r)).

It follows from (5.5) thatu = w(s). Thus, by differentiating the second equation in
(5.35), we get (Irp(r))’ = a(In cosps + 6(r)))/dt. Hence, p(r) = k(s) cosps + 6(r)) for
some functiork(s). Differentiating the last equation with respectaamives (Ink(s))’ =
b tanps + 6(r)). Therefore andp are constant. We may assurfie= 0 by applying a
suitable translation is. Hence, we obtain from (5.35) that

(5.35)

g = ds ® ds + (cos bs) dr @ dr,
9 9 9 3 b 9 (5.36)
Vys— = 0, Vy/9s— = —b tanps)—, Vysr— = = sin(2bs)—,
s 5 ooy, bs) o ooy, = 5 (2Ds) %

2a% — ¢? se@b
A= L, w=+va?— c? seébs, ¢ = f(t) secbs, (5.37)
a2 — c2 se@bs

wherec = p is a positive number and= +/b% — 1.
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From (5.1), (5.36), (5.37) and the formula of Gauss, we get

2a? — ¢? se@bs
Lyy=i————L,— L,
a? — c2 se@bs
Ly = (iva? — c? se@bs — b tanbs)L;, (5.38)

Ly = (b sinbs + ix/a? co? bs — ¢2) cosbsL + if (1)L, — co bsL.

After solving the second equation in (5.38) we find

fa . _4( asinbs c 1 c tanbs
L = B(cosbs) expi { — sin — | —-tan | —— |+ A
b a? — ¢? b a? — ¢? se@bs

for someC3-valued functionst = A(s) andB = B(). Substituting this into the first equa-
tion in (5.38) yields

24% — 2 se@bs
Va2 = 2 se@bs
Solving (5.39) gives
fa . _41( asinbs c 1 c tanbs
A(s) = co cosps) expi {Z sin <a2—_62) -3 tan (m)}
Vb2 — ¢2 — co@ bs(v/a? co bs — c? + ia sinbs)*/?
exp( tan1(b sinbs/v/a? co? bs — c2))

for some vectorsg, c1 € C3. Hence we obtain
. sinb tanb.
L = z(r) cosps) expi {c—l sint (u) ~ S tant <;>}
b a? — c? b a? — c? se@ bs

Vb2 — 2 — co bs(v/a? coF bs — 2 + ia sinbs)*/?

Al(s) =i A'(s) — A(s). (5.39)

+c1

+c1 , . (5.40)
exp( tanm1(b sinbs/+/a? co bs — c2))
wherez(r) = A(t) + co. Since|L| = 1, (5.40) implies
1
1212 = lc1l? = (z.c1) =0. (5.41)

b2 — o2’ (bz _ CZ)(aZ _ CZ)Za/b’

Also, from (5.36), (5.39) an(L,, i L;) = 0, wefind|z/(¢)] = 1and(z, ic1) = 0. Substituting
these into the last equation of (5.38) yields

() = if ()7 @) — % — A)z(0).

Thus,z(¢) is a unit speed Legendre curveSA(1/v/b2 — ¢2) c €2, whereC? is a complex
hyperplane with hyperplane normal Consequently, the Lagrangian surface, restricted to
W11, is congruent tor o L with L given by Case (20).
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Case (1ii.b.2).0 < K = b? < u? + 10n a neighborhood; » of a pointp € W;. Without
loss of generality, we may assurbe- 0. From (5.10) and (5.34) we get

g = ds ® ds 4 cog(bs + 6(r)) dr @ dr,

w2 =b? — 1+ p2(t) se@(bs +0(t)), ¢ = f(r) secps + 0(t)). (5.42)

Sincep = u(s) andp(r) secps + 6(r)) depend only o according to the second equa-
tion in (5.42), p(r) andd(r) both are constant as in Case (l.ii.c.1). So, we hawe0 after
applying a suitable translation g1 Hence, we obtain from (5.42) that

g=0ds®ds+ cofbsdr @ dr,

3 3 a b 3 (5.43)
Vyos— =0, Vyas— = —b tanbs—, Vyge— = = Sin 2bs—
0105 5 0105 5z ot W = 2 %o
and
2b%2 — 2+ c? se@b
A= te s, pL:x/bz—l—i—czse@bs,
Vb2 — 1+ 2 se@bs
¢ = f(t) secbs, (5.44)

wherec = p is a positive number. From (5.1), (5.43) (5.44) and the formula of Gauss, we
have

. 2b% — 2+ c? se@bs
Ly =1 Ly —L,
Vb2 — 1+ 2 se@bs

Ly = (ivb? — 1+ ¢2 se@bs — b tanbs)L;, (5.45)
Ly = (b sinbs + iy/c2 + (b2 — 1) co bs) cosbsLy + ifL; — cofbs L.
Case (lii.b.2.1).b > 1. In this case, (5.45) becomes
2a% + 2 se@(b
Lss:i @t (S)Ls_Ls
Va2 + c? seé(bs)
(5.46)

Lg = (iv/a? + c2? se@(bs) — b tanps))L;,
Ly = (b sinbs 4 iv/c2 4 a2 co? bs)(cosbs)Ls + ifL; — (cos bs)L

with a = /b2 — 1. After solving the first equation in (5.46) we find

Vb2 + c2 — co@ bs(va? cof bs + 2 + ia sinbs)*/b
exp( tan1(b sinbs/+/a? co bs + c2))

+ z(1)(cosbs) (v a? co bs + 2 + ia sinbs)*/?

] tanb.
x expl < tanh __camws (5.47)
b Va2 + 2 se@ bs

L =C()
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for someC3-valued functiong andC. Substituting this into the second equation in (5.45)
shows thaC is a constant vector, say € C°. Since|L| = 1, (5.47) implies
1
2 2
= = N 5 = O, 548
=1l = s ) (5.48)

Also, from (5.43), (5.47) andL;, iL;) = 0, we find

2/ (O = (a® + A", (z,ic1) =0. (5.49)
Also, by substituting (5.47) into the last equation of (5.46), we get
Z'(0) = if (02 (1) — B + A)z(). (5.50)

Therefore,z is a Legendre curve is3(1/+/b2 + ¢2) ¢ €? with speed 1(a? + ¢?)¥/?,
whereC? is a complex hyperplane witty as its normal. Hence the Lagrangian surface,
restricted toWs 1, is congruent tor o L with L given by Case (21).

Case (l.ii.b.2.2)» = 1. In this case, (5.44) becomes

Ly =icsecsLg— L, Ly = (ic secs — tans)L,,

Ly = (sins + ic)(coss)Lg + ifL; — (COS s)L. (5.51)

After solving the first equation in (5.51) we find

L = Z(I)(COSS)@ZiC tanhL(tans/2) + C(I) /2 + sin2s et tan~1(c~1 sins) (552)

for someC3-valued functiong andC. Substituting this into the second equation in (5.45)
shows that is a constant vector, say. Since|L| = 1, (5.52) implies

=l =5, (zc1)=0. (5.53)
From (5.43), (5.52) andL;, iL;) = 0 we find|z'(£)|? = 1, (z, ic1) = 0. Also, by substitut-
ing (5.52) into the last equation of (5.51), we get

2'(0) = if()7(0) — (L4 Az (5.54)

Thus,zis a unit speed Legendre curveSA(1/+/1 + ¢2) C C?, whereC? is a complex hy-
perplane withrg as its hyperplane normal. Consequently, the Lagrangian surface, restricted
to Wy 1, is congruent tor o L with L given by Case (22).

Case (1.ii.b.2.3)0 < b < 1. In this case, (5.44) becomes

2 2
sec bs — 2
Lss:i#l«c_lu a=+v1-"p?
V2 se@ bs — a?
5.55
Ly = (iv/c? se@bs — a2 — b tanbs)L;, ( )

Ly = (bsinbs + iv/c2 — a2 co? bs) cosbsLg + ifL, — coS bsL.
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After solving the first and second equations in (5.55) we find
(cosbs) expi(b~1c tanhY(c sinbs/+/c? — a2 co bs))
expi(ab—1 sinh™(a sinbs/v/c2 — a?))
c17V/b2 + c2 — co bs expi{(a?(2b? + 2c? — 1)/2b?(a? — ¢?))
x tan1(v/c? — a2 co? bs/b sinbs)}

L =z(?)

+ (5.56)
(a sinbs + /c? — a? co2 bs)/" expi{(a® — 2c?/2b%(a® — c?))
x tan (b sinbs/~/c2 — a? co bs)}
for someC3-valued functiory = z(¢) and constant vectar.
Since|L| = 1, (5.56) implies that
1
2 2 _ _
1z|* = leal =212 (z,c1) =0. (5.57)

From (5.43), (5.56) antL;, iL;) = Owe find|z/(f)] = 1and(z, ic1) = 0. Also, substituting
(5.56) into the last equation of (5.55) yields

() = if ()7 @) — % + A)z(0).

Thus,zis a unit speed Legendre curveSi(1/v/b2 + ¢2) c €2, whereC? is a complex hy-
perplane withe; as its hyperplane normal. Consequently, the Lagrangian surface, restricted
to Wy 1, is congruent tar o L with L given by Case (23).

Case (1.ii.b.3).K = 0 on a neighborhoodV 3 of a pointp € Wj. In this case, we obtain
from (5.10) and (5.34) that

g =ds ®ds+ (cs + 0(r))? dr @ dr,

oo PO A0 (558)
(es+06@)2 cs+0(@)’
If ¢ = 0, we getg = ds ® ds + 62(r) dr ® dr andg = ¢(r). Thus, we have
g=0ds®ds + dv ® dv, o = ¢(v), (5.59)

wherev = v(z) is an antiderivative of(r). Sincer = A(s) andu = u(s) for Case (L.ii), we
know from (5.33) thaj is constant.

If © =0, then (5.1) and the equation of Gauss imply tkiat 1 which is a contradic-
tion. Henceu is a non-zero constant, sayThus, we obtain from (5.3) that=a — a1
Therefore, (5.1), (5.59) and the formula of Gauss imply that

1
Lg=1 (a - —) Ly — L, Ly, = iaL,, Ly, =iaLg +ip(v)L, — L.
a

(5.60)

Solving the first and the second equations in (5.60) gives
+ Cle*is/a (5.61)

L = Z(v)eias
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for someC3-valued functionz = z(v) and vectore; € C3. Since|L| = |Ly| = |L,| =1
and(Ly, iL,) = 0, we derive from (5.61) that

2 2 2 ,
lz|* = 1'1° =1, el = — (z,c1) = (z,ic1) = 0.

1
1+a2’
(5.62)

Also, by substituting (5.61) into the last equation in (5.60), we find

') = ip(»)7 () — (L + a?)z(y). (5.63)

Consequently, the surface is congruentte L whereL is given by Case (16).

Next, assume that # 0. In this casep(t) andé(r) are constant due ta = u(s) and
the second equation in (5.58). So, we have 0 after applying a suitable translation in
s. Consequently, we have= ds ® ds + ¢2s2 dr ® dr. So, if we putv = ¢z andp = b, we
find

g =ds®ds + s°dv ® dv, (5.64)
b? — 252 b2 — 52 f(w)
CWEee TS T =6

From (5.58), (5.64) and the formula of Gauss, we obtain

L —'bz_ZSZL L Ly = 1+'bz_s2 L
55 = lsm s s sv = s l s vy (566)
Lyy = (isv/b2 — s2 — s)Lg + if ()L, — s°L.
After solving the first and second equations in (5.66) we obtain
PN = O N L et (5.67)
(c+ b2 —s2)ib  itarl/p2—s2

for someC3-valued functiong and constant vectar € C3. Since|L| = 1, (5.67) implies

1

2 2

lzI” = lc1l® = 112 (z,c1) =0. (5.68)
Also, from (5.43), (5.56) an¢lL;, i L,) = 0 we find|z’(v)| = 1 and(z, ic1) = 0. Moreover,
by substituting (5.67) into the last equation of (5.66), we get

(V) = if ()7 (v) — (1 + b2)z(v).

1
1+b2
perplane witteg as its hyperplane normal. Consequently, the Lagrangian surface, restricted
to Wy 1, is congruent tar o L with L given by Case (17).

Thereforezis a unit speed Legendre curves#( ) C €?, whereC? is a complex hy-
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Case (l.ii.b.4).K = —b? < 00n a neighborhood¥; 4 of a pointp € W1. We may assume
b > 0. From (5.10) and (5.34) we get

g = ds ® ds + cost(bs + 6(r)) dr ® dr,

12 = p2(r)sectP(bs + 0()) — b2 — 1, ¢ = f(t)sech bs + 0(r)), (5.69)

for some functionp(r) and f () satisfyingp? > b + 1.

Sinceu = u(s), the second equation in (5.69) implies tipét)sech bs + 6(r)) depends
on only onswhich is impossible unless boghandd are constant. Thus, we hate= 0 after
applying a suitable translation &lf we denote the constaptby ¢, we obtainc? > 5% + 1.
Moreover, we have

g = ds ® ds + cosif bsdr ® dbr, ¢ = f(t) sechbs,

\Y/ 9 0 \Y/ 9 btanhb 9 \Y 9 b sinh 2 9
— =V, —_— = S—, _— = == S —
0735 55 0/s o o Ve = 2 as  (5.70)

2 sectRbs — 242
sechrbs — 2
A= ¢ i 4 , w =+ c2sechlbs — a2, a=+vb?2+1
v c2sechbs — a?

From (5.1), (5.70) and the formula of Gauss, we find

2 soctRhs — 242
sechfbs — 2a
Ly=is u Ly—L, a=+vb02+1,

v c? sechPbs — a? 1
Ly = (iv/cZsech?bs — a2 + btanhbs)L;, (5.71)
Ly = (i\/m — b sinhbs) coshbsLg + ifL; — cosIt bsL.

Solving the first and the second equations of this system gives

L = e~iab™" sin((a sinhbs)/ v 62_“2){c1(i\/ ¢2 — a2 costf bs — b sinhbs)

+ Z(t)eib_lc tan2((c sinhbs)// c2—a? cosi? bs) COShbS} (572)

for some vectorc; and vector functionz. Since |L| = |Lg| =1, |L;| = coshbs and
(Lg, iLy) = 0, we obtain from (5.73) that

IZP=1,  (z,c1) = (z,ic1) = 0.

2 2
[z]* = lc1]” = ,
2 —b?

By substituting (5.72) into the third equation of (5.71) we obtain
2(0) = if (02 (1) = (¢* = b))
Thus,z(7) is a unit speed Legendre curveSf(1/v/c2 — b2) c C2. Therefore, the immer-

sionL, restrictedW1 4, is congruent tar o L, whereL is given by case (24).

Case (ll). V., e1 # 0 on an open subsét; C V. In this casewf(el) iS never zero orva.
Since Spares1} and Spar{e;} are of rank one, there exists local coordindtesy} on V>
such tha®/dx, d/dy are parallel tae1, e2, respectively. Thus, the metric tengptakes the
form:

¢ = E?dx ® dx + G%dy ® dy, (5.73)
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for some positive functiong, G. We may assum@/ox = Eej, 3/dy = Gez. From (5.73)
we have
Gy oE oG

E —

Gy=—. (5.74)

2 _- —_ —
w1(32) - EG ) y 8y ) X ax

w%(é’l) = ﬁ,

If » = 2u, (5.3) reduces t& = ;2 + 1 whichimpliesu is constant. So, the first equation
in (5.2) andw%(el) # 0 give ¢ = 0 which contradicts t@ # 0. Hence, we have =£ 2.

Also, the second equation in (5.2) ami(el) # 0 give e21 # 0. So, A is a non-trivial
function.

Case (Il.i). « = 0 on V2. In this case, we get from (5.3) th&t= 1. Moreover, from (5.2)
we find

<pw%(61) = Aw%(ez), e\ = )\a)%(el), e19 = gow%(ez), (5.75)
It follows from (5.74) and (5.75) thatE = n(x) andoG = k(y) for some functiong;(x)
andk(y). Hence, (5.73) becomes
_ 7P k2(y)
§= "2 02
If u = u(x) andv = v(y) are antiderivatives af(x) andk(y) respectively, then (5.1) and
(5.76) reduce to

dx ® dx + dy ® dy. (5.76)

g=2"2du®du+ ¢ ?dv e d, (5.77)
a 0 d a 0 a 0 0]
hl—,—)=J—, hl—,—)=0, hl—,—)=J—. (5.78)
ou ou ou ou v dv v v
From (5.77) we have
v d 0 ¢%hy 0 N
s = T A ou A3 sy = TN du @

a Mg, 0 @, 0
Vyjgp— = — - 5.79
5y @3 du @ (.79)
By applying (5.77), (5.78), (5.79) and the formula of Gauss, we obtain

Lyy = (i — (InA)y)Ly + (IN@)yLy — )\_lZLa
Lyy=—(nA),L, — (Ing),L,, (5.80)
Lyy=(nA)yL, + (G — (Ing)y)Ly — alzL,

By applying (5.75) and (5.77), we find

Awf(el) = @Ay, q)w%(eg) = Ay, 03hy = 230, (5.81)
SinceK = 1, (5.77) and (5.81) imply that

§0)\v) <)\§0u) 1
+(2L) = =, (5.82)
( 22 /), ), Ao
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If », =0, we getyp, = 0 from (5.81) which contradicts (5.82). Hence, we must have
Ay # 0. Similarly, we also have, # 0. So, the last equation in (5.81) gives

Pho A
e ¢2u = f(u, v) (5.83)

for some non-zero functioh Also, f is non-constant according to (5.82) and (5.83).

We divide Case (ll.i) into two cases.

Case (Il.i.a).A = ¢ # 0 on a neighborhood); of a point in W2 1. In this case, (5.81)
reduces to., = A,. Thus,A = g is a function ofs := u + v. So, (5.82) yields 2(s)A"(s) —
2)/2(s) + 1 = 0. After solving this differential equation and applying a suitable translation
in s, we obtain

. coshbs
= T

whereb is a non-zero real number. Hence, system (5.80) reduces to

(5.84)

Luu = (i — btanhbs)L, + btanhbsL, — 2b? secibsL,
L,, = —btanhbs(L, + L,), (5.85)
Ly, = btanhbsL, + (i — btanhbs)L, — 2b% secibsL.

If we putt = u — v as well ass = u + v, then (5.85) gives
Ly=3Ly+Ly), Li=3%Li—Ly),  Lg=3Luu~+2Luy+ L),
Ly = 5(Luu — Lw),  Lu = 3(Luu — 2Luy + L)
Thus, (5.85) becomes

Ly = (iz — btanhbs> L, — b®>secHbsL, Ly = (iz - btanhbs> L,

Ly = (é + btanhbs) L, — b®secibsL. (5.86)

Solving the first two equations in (5.86) gives
1 4 4b2) coslif bs — 4b2
cl\/( + 4b%) cost bs ) seclbs

i tan1(2btanhbs) (5.87)

L= (A(z)e”/ 24
for some vector functiorA and vectore;. Substituting (5.87) into the last equation of
(5.86) yields 4”(r) + (1+ 4b%)A(r) = 0. After solving this equation we findi(r) =
2 CoS(/1 + 4b21/2) + c3 sin(v/1 + 4b? 1/2) for somers, c3 € C3. Hence, we obtain

L = ce—itan (@ ta”hbs)\/ (1 + 4b2) costt bs — 4b2 sectbs

+ ¢//2 seclbs{ca cos§/1 + 4b21/2) + c3 Sin(y'1 + 4b21/2)} (5.88)

Thus, we obtain Case (25) after choosing suitable initial conditions.
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Case (ll.i.b).¢ # 0 andx # ¢ on a neighborhoo: of a point inWy, 1. From (5.75) we
know thateo, e1¢, wf(ez) are nonzero om,. By applying (5.77) we get

g =p>du @ du + 2 dv ® dv, (5.89)

wherep = 1/A andy = 1/¢. Since we have,, 1, # 0in Case (Il.i), we fing,, ¥, # 0.
By applying (5.82) and (5.83) we find

fv _VYu _ Yu (&) —0 5.90
v op ! (p)u+ v U+W ' (5.90)

The first equation in (5.90) implieg,, = f%p — fu¥. If p = p(v), we obtain f, =
f2p/yr = — fop, which implies f(u, v) = H(v)e v andy = —p,e*”v / H(v) for some
function H(v). Thus, we havéd?(v) = p2e?#» by usingy,, = — fo which is impossible.
Thus, we must also hayg, # 0. Hence, we obtaip,, oy, ¥, # 0.

Next, assume that, = 0, i.e.,v = ¥(u). Then the first equation in (5.90) gives=
+/ 2y ()Y’ (u)v + 2h(u) for some functiork = h(u). By substituting this into the second
equation in (5.90) and by applying the first equation, we get

20/ (Y9 v+ h) + (W2 + vy + 1) + Py + APy + h)? = 0.

Thus,y is constant which is a contradiction. Hence, we ggto,, ¥, ¥, # 0.
From (5.89) and (5.90), we find
3 pud Y, d o _ppd Yy d

Vo — =202 _Yu S Vo — = 20 Yu @
o/ B pou Yo 8050 pou Y o

d d d
Voo =2 0 (5.91)
v o u Y v

Moreover, from (5.78), we have

0 0 d 0 0 d 9 0
h|l—, —)=J—, h|—,—)=0, hl—,— ) =J—. (5.92)
ou ou ou ou v dv v v
By combining (5.78), (5.89), (5.91), (5.92) and the formula of Gauss we obtain
Ly = (i + &) Ly — ﬂLU - sz’ Lyy= &Lu + ﬂLu,
P v P 14
Ly = _%Lu + (i + %) Ly— sz' (593)

A direct computation shows that the compatibility conditiohg;, = L, and Ly, =
Ly, hold if and only if (5.90) holds true. Thus, accordingrmposition 1the Lagrangian
surface is locally given by Case (26).

Case (ILii). u # 0andx # 2u on a neighborhood/, 3 of a pointp € Va.

We divide this case into two casés= yu or » # u.
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Case (lIlii.a).A = u. Let @ is a solution ofi(1 — 2 co 6) = ¢ sind cosy and pute; =
COSbHey + Sinbeo, e2 = — Sinfe1 + COSHe2, then (5.1) yields

h(ey, e1) = AJer,  h(e,e1) =0,  h(ea, &) = pJéy, (5.94)

where X = sir? (24 cost + ¢sind) + A cos, p = co By cosd — 21 sinb) — A siné.
Hence, this case reduces to Case (l.ii.a) or Case (ll.i) accordivig ¢ = 0 or V., e # 0.

Case (ll.ii.b). A # . The assumptioiV,,e1 # 0 for Case (ll) and the second equation in
(5.2) implyeoi # 0. SinceK = Au — pu? + 1 is nonzero, we get

ek = (2 — Aej, j=12, (5.95)
which impliese>u # 0 as well. Combining (5.2) with (5.95) gives

e1i = pof(e1) + (A — 2u)wi(e2), (5.96)

e19 = duwi(er) + pwi(e2), e2(In 1) = w)(er).

By applying the last equation of (5.96) and Cartan’s structure equation, we find
d(x 1wl = 0. Thus, there exists a functiersuch that

d
du = w—, — = ues. (5.97)
% ou
Due toK = A — u? + 1, the first two equations in (5.96) give
Aperp + perp = (4K — 4u® — 4— (pz)a)%(ez). (5.98)
Case (ILii.b.1).4K = 4u? + ¢? + 4. Inthis case, we havé > ;2 + 1. So, we may assume
¢ =2JK — u2 — 1. Thus, byK = Au — 2 + 1 and (5.96), we have

K—pu?2-1
1 = +w§(e2) —2./K — 2 — Lep(In ). (5.99)

Let @ = &(u, v) be a solution of
2

e/t
(In®), = ————. (5.100)
VK—pu2-1
Then, byd/du = wes, (5.98), (5.100) and the last equation in (5.96), we obtain
0 Den ey ,uzelu 2
- = {(In®), + ——F—— — nwi(ez)le2 = 0.
[3" \/K—uz—l] VK -u2-1 K-—p2-1 "1

Hence, there exists a coordinate systemv} so thatd/dv = Pes// K — u2 — 1. With
respect to this coordinate system, we have

2

oy
2
g=MU du ® dM—}-mdU@dU (5101)

D u?
= 0, (5.102)



B.-Y. Chen / Journal of Geometry and Physics 53 (2005) 428—-460 455

where the second equation is due to (5.100), (5.101yamg# 0. Also, by applying (5.101)
and (5.102), we know that the Gauss curvatdsatisfies

—Kud _!(2(K—u2—1)uu+¢uu) +<Mv\/K_M2_1>}.

JK—i2-1 (K — u2 — 132 o
(5.103)
From (5.101) we find
v O d (K—p?— T,
Y = — 7 — 5 —
ou n ou o) v
0 My 0 My D,\ 0
Vog, — = 2% _— — | —, 5.104
8/ 5y ,u8u+<K—/L2—1+<D v ( )
v 0 _ P+ (K- p? - )00, § pi L P0) D
Vg, = w2(K — u2 —1)?2 u K—p2-1 o) o
Thus, by (5.1), (5.101), (5.102) and the formula of Gauss, we obtain
K—pu?—-1
Luu={i(K+u2—1)+ﬂ}Lu—( w2y,
N D
My . Hu 21y
LMUZFLM-F,U«{I,M-Fm-F @}LU
_ ) (5.105)
i® Py + 2(K — = — Ly
Lyy=9® - Ly
K—p?-1 (K — p2 —1)2
. ity @, @2
21+ —— + — —— L.

A direct computation shows that the compatibility conditiohsg;, = L, and L, =
Ly, hold if and only if (5.102) and (5.103) hold true. Therefore, the Lagrangian surface is
locally given by Case (27).

Case (I1ii.b.2).4K # 4u® + ¢? + 4. From (5.98) we get

i) = ; (Ij“_e LMZ i ‘i;lf = (5.106)
Thus, by applying (5.95), (5.96) and (5.106), we find
wy(er) =eainp),  wile2) = ea(ING),
L (5.107)

G = .
VIAK — p2 — 1) — ¢?|
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which implies [ue1, Gez] = 0. Thus, there exists a coordinate systesm} with 9/0u =
e, 3/9v = Gez. With respect to this coordinate system, we have

dv® dv

2
g=pn "du ®du + . (5.108)
|4(K — p? — 1) — ¢?|
If 4(K — u? — 1) > ¢?, then (5.108) implies
d d 0
Vasou— = (IN Wy — — {4(K — 2 — 1) — oD sty —
ooy (In 1) o 1 (K—np )—¢ bupto o,
G] 0 Appn + Pu d
Vo — = (In 1)y — iy
o (In s, ot 4K —pu2—1)— 2 v (5.109)
v 0 Ay + oy 0 Ay + opy 0
3/ov =z

2K -2 D)= o K =2 —1) =P o

From (5.1), (5.3), (5.108), (5.109) and the formula of Gauss, we have

. . w
Lyy = {iK +ip® + IM}LM —{4(K — u® — 1) — ¢*lupyLy,

, Ay, +
L, — %L” {m2+ Wik + 9Py }Lv

4K — pu? —1)— ¢?

_ i 3 Ay + oo .
AR —p2-1)—¢?  p2AK - p2-1)— 22"
iy dppiy + @y
2 2 Ly
VAK —p2—1)— g2 AK—-p2-1)-¢
L

CAK - pZ-1)—¢?

A straightforward long computation shows that the compatibility conditiohg; ), =
(Lyv)u and Lyy)y = (Lyy), hold if and only if u ande satisfy

Koy + @ity — 12py <Gu) Lo
_ , Gu) (MY Z _kue. 5.110
Hv = @K — 2 — 1) — 2372 w/, ( G >v a (5.110)

whereG = 1//4(K — u2 — 1) — ¢2. From these we conclude that the Lagrangian surface
is locally given by Case (28).
If 4(K — pu? — 1) < ¢?, (5.108) becomes

dv® dv
¢? — 4K — p2 -1y

g=p’du®du+ (5.111)
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which yields

d My 0 9

Vojous- =~ 4K — pu® = 1) = P,
au M au av
9 _ @ A +Qpu B

Vo — = 20 2 9 |

Y = W n MK —p2—1)— g2 v (5.112)

9 Aty + ¢ou d Aupy +opy D

Vyg— = - —_
P50 = W2(AK —p2—1)— 22 0u MK —pZ—1)— g2 v’
From (5.1), (5.3), and (5.112) we have

Lus = {i(K T2 -1+ %} L+ (4K — 12 — 1)~ ¢Ppusuo Lo,

. A, +
L= {WZJF Wiby + 9@y }Lv,

0 AK — p? —1)—¢?

i Aty + ooy }
Ly = + L
" {4(K—M2—1)—<p2 WP (MK — 2 — 1) — 22 |

ip Appey + @@y
2 2 L”
Vo — 4K —p?-1) MK -p2-1)—¢
L

Tak 2oy - g

A straightforward computation shows that the compatibility conditiohg; X, = (Luv)u
and L,y)y = (L), hold if and only if x andg satisfy

2
woou — Koy — oupy Gy My
_ , Ju VY — _KuG, 5.113
Hv = i — Ak — 2 - 1)pR </L )u+<G)v a (>-113)

whereG = 1/,/¢2 — 4(K — 2 — 1). From these we conclude that the Lagrangian surface
is locally given by Case (29).

The converse can be verified by very long computations.
6. Some existence results

Proposition 1. Let p= p(u,v) and ¢ = ¥(u,v) be real-valued functions with
Ous Pvs Yu, Wy # 0 defined on a simply-connected open subset B%datisfying

P Pv
v = w — — =0. 6.1
Py = Y (w)qu(w)vamﬁ (6.1)
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Then A,y = (U, go) with gg = p?du ® du + 2 dv ® dv is of constant curvature one.
Moreover, up to rigid motions of' P2(4), there exists a unique Lagrangian isometric im-
mersiona,y : A,y — CP?(4)whose second fundamental form satisfies

o 9 0 o d a 9 0
hl —, —)=J—, hl—,—]=0, hl — —)=J—. (6.2)
ou Ou ou ou Ov dv v v
Proof. A direct computation shows that the Riemannian connectiof,gfsatisfies
i) 0 0 0 i) G]
Vojou~— = Pu 0 Vu Pv T Yu

W ewm wa Mmooy
0 pv 0 Yy D

Vojw—=——7—+———.
v o u (/Y

andA,y is of curvature one. If we define a symmetric bilinear farran A,y by

a 0 a d 0 a 0 a
ol—,— | =—. ol—,—) =0, ol—,— ) =—, (6.4)
ou  ou ou du v dv dv v
then (6.1), (6.3), (6.4) and the definitions @§, p, v imply that (o(X, Y), Z) and
(Vo)(X, Y, Z) are totally symmetric. Moreover, a direct computation shows that the curva-
ture tensoR ando satisfy condition (iii) of Theorem A. So, according to Theorems A and

B, up to rigid motions there exists a unique Lagrangian immersjgn: A,y — CP?(4)
whose second fundamental form is given by (6.2)]

(6.3)

Proposition 2. Letu = u(u, v) and @ = @(u, v) be real-valued functions defined on a
simply-connected open subset UR¥ satisfying

D u?
— == 20,
ou v 7 6.5)
poy/K —p?—1 L (A& = n? = Do+ Py —p®K '
o (K — p2 — 1)32 - K—p2—1

where K is a real number 2. ThenBl’f = (U, g1) with

2

0]
gzzﬂzdu(@du—i—mdl)@dv

is of constant curvature K. Moreover, up to rigid motions@©R?(4), there exists a unique
Lagrangian isometric immersio l’fq) : B;]f¢ — CP?(4) whose second fundamental form
satisfies

haa—(K—i—z)Ja (22 =22
o ou) R waw) M

(6.6)
d 0 D d d

hl— —)=——+—)J— +20]—.
o’ v K—u2—-1)" du w
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Proof. A direct computation shows that the Riemannian connectiabfpfsatisfies

(K =1 = Lupy &

d d
Va/i?u_ = (In M)ua -

u @2 o’
0 0 by 0
Vojou— = (Inw)y— —————+(n®), | —,
oo ( M)U8u+<K—M2—1+( )">8v
) ) (6.7)
Vo 3 _ _¢> Wity + (K — p _1)¢¢ui
gy = u2(K — pu2 —1)? ou
Hlky 0
——————+(n®), | —
+<K—u2—l+( )U>8v
and the Gauss curvature qu, is the positive constark.
If we define a symmetric bilinear fora on Pf(p by
9 9 d a 9 9
P = K 2 P P = 2_7
a<8u au) ( +'u)8u U(au Bv) H v
(6.8)

a 0 D a od a
0<8v’8v)_(K—,u2> 8u+ o’
then it follows from (6.5), (6.7), (6.8) and the definition g§ that (o(X, ¥), Z) and
(Vo)(X, Y, Z) are totally symmetric. A direct computation shows that the curvature ten-
sorRando satisfy condition (iii) of Theorem A. Thus, Theorems A and B imply that, up to
rigid motions, there exists a unique Lagrangian immerﬁﬁgg : B/’fq) — CP?(4) whose
second fundamental form is given by (6.6)]

Similarly, we have the following.

Proposition 3. Let u = u(u, v) and ¢ = ¢(u, v) be real-valued functions defined on a
simply-connected open subset URSf satisfying

) — —KuG, (6.9)

_ Koy + oup — 1Peu <@) +(ﬂ
NG/,

STV e ) S

whereG = 1/y/4(K — u? — 1) — ¢?for areal numbeX > 2 + 1+ ¢?/4.ThenCK =
(U, g2) with g2 = u?du ® du + G?dv ® dv is of constant curvature K. Moreover, up to
rigid motions, there exists a unique Lagrangian isometric immerﬁs}j@ﬁ C[fw — CP%(4)
whose second fundamental form satisfies

a 0 a a 9 0
h— —)=E&+u2+1)J—, h|—, —)=n2I—,
(814 8u> (K+u+1) ou <8u 8v> ° v

6.10
a 0 1 7 ad n 1 7 ( )
w’ v 4K —p?2—1)—¢? du  JAK —p2—1)— 2 v
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Proposition 4. Let u = u(u, v) and ¢ = ¢(u, v) be real-valued functions defined on a
simply-connected open subset UR¥ satisfying

2
— Ko, — G
1opu — Koy — gppu ( u) +(&) = —KuG, (6.11)
u v

v = 0,
ST T S G

whereG = 1//¢? — 4(K — u2 — 1)forareal numbek < u? + 1+ ¢?/4. ThenDK =
(U, g3) with metricgz = u?du ® du + G2 dv ® dv is of constant curvature K. Moreover,
up to rigid motions, there exists a unique Lagrangian isometric immer@fgn D{fw —

C P?(4) whose second fundamental form satisfies
a 0 a d 0 a
| — —)=K+u2+1)J—, h|(—, —)=p?I—,
(814 8u> (K+p+1) ou <8u 8v> ” v

a 0 1 Ja n 1 Ja
v’ v 9> — 4K -—p?2—1) du  J? —AK —pZ—1)

(6.12)
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